Partial smoothness and active sets: a fresh approach

Adrian Lewis

ORIE Cornell

Joint work with: J. Liang (Cambridge)

ISMP Bordeaux 2018

Outline

Three examples identifying activity in variational problems.

- Active set methods for SDP.
- Primal-dual splitting for saddlepoints.
- ProxDescent for composite optimization.
- Three ideas of partial smoothness:
 - Differential-geometric: constant-rank
 - Algorithmic: identification
 - Variational-analytic: nonsmooth geometry...

 \ldots and their equivalence and ubiquity.

Example 1: active sets in semidefinite optimization For $C^{(2)}$ -smooth, strongly convex f, the optimal solution \bar{X} of $\min\{f(X) : X \in \mathbf{S}_{+}^{n}\}$

is just the zero of "gradient + normal cone" operator:

$$\Phi(X) = \nabla f(X) + \underbrace{\mathsf{N}_{\mathsf{S}^n_+}(X)}_{X \perp Y \in -\mathsf{S}^n_+}.$$

Projected gradient iteration $X \leftarrow (X - \alpha \nabla f(X))_+$ converges to \bar{X} with min $\|\Phi(X)\| \rightarrow 0$. If $0 \in \operatorname{ri} \Phi(\bar{X})$ (strict complementarity), iterates identify an active manifold: eventually,

$$X \in \mathcal{M} = \{X : \operatorname{rank} X = \operatorname{rank} \overline{X}\}.$$

Linear convergence, and faster via projected Newton steps in \mathcal{M} .

Example 2: primal-dual splitting

For convex f, g, p, q with p, q smooth, and a matrix A, saddlpoints for

$$\min_{x} \max_{y} \left\{ (f+p)(x) + y^{T}Ax - (g+q)(y) \right\}$$

are zeros of the monotone operator

$$\Phi\left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}\partial f + \nabla p & -A^{T}\\A & \partial g + \nabla q\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right].$$

Generalized proximal point seeks saddlepoints by updating (x, y):

$$\begin{aligned} x_{\text{new}} & \text{minimizing} \quad f(\cdot) + \frac{1}{2} \| \cdot -x + \nabla p(x) + A^T y \|^2 \\ y_{\text{new}} & \text{minimizing} \quad g(\cdot) + \frac{1}{2} \| \cdot -y + \nabla q(y) + A(x - 2x_{\text{new}}) \|^2. \end{aligned}$$

Identification for saddlepoint problems

Primal-dual splitting for

$$\min_{x} \max_{y} \left\{ (f+p)(x) + y^{T}Ax - (g+q)(y) \right\} :$$

includes many special cases.

- $g = \delta_{\{0\}}$ (forcing y = 0): proximal gradient method.
- ▶ p = 0 and q = 0: (Chambolle-Pock '11, ...).

(Liang-Fadili-Peyré '18) give conditions for convergence, with

$$\min \left\| \Phi \left[\begin{array}{c} x \\ y \end{array} \right] \right\| \to 0,$$

identification of active manifolds,

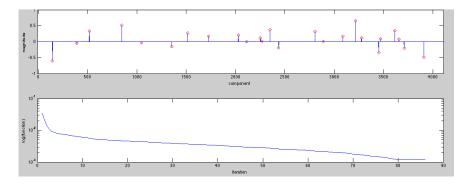
$$\left[egin{array}{c} x \\ y \end{array}
ight] \in \mathcal{M} imes \mathcal{N} \quad {
m eventually},$$

and linear convergence.

Example 3: nonconvex regularizers for sparse estimation

$$\min_{\mathbf{x}} \|A\mathbf{x} - b\|^2 + \tau \sum_{i} \phi(\mathbf{x}_i) \quad \text{(Zhao et al. '10)}.$$

Random 256-by-4096 A, sparse $\hat{\mathbf{x}}$, and $b = A \hat{\mathbf{x}} + \text{noise}$.



Eventual support identification and linear convergence.

Composite minimization via ProxDescent

Minimize nonsmooth (but prox-friendly) $h: \mathbb{R}^m \to \overline{\mathbb{R}}$ composed with smooth $c: \mathbb{R}^n \to \mathbb{R}^m$. Around current x,

$$\tilde{c}(d) = c(x) + \nabla c(x)d \approx c(x+d).$$

Proximal step d minimizes

$$h(\tilde{c}(d)) + \mu \|d\|^2$$

Update step control μ : if

$$actual = h(c(x)) - h(c(x+d))$$

less than half

$$\mathsf{predicted} \;=\; hig(c(x)ig) - hig(ilde{c}(d)ig),$$

reject: $\mu \leftarrow 2\mu$; else, **accept:** $x \leftarrow x + d$, $\mu \leftarrow \frac{\mu}{2}$. **Repeat.**

(L-Wright '15)

Each example involves an **active manifold** of solutions to a variational problem, **identified** by diverse algorithms.

Three, often equivalent perspectives on partial smoothness:

- Differential-geometric: constant-rank;
- Algorithmic: identification;
- Variational-analytic: nonsmooth geometry.

Partly smooth operators

Definition 1 Set-valued $\Phi: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is partly smooth at \bar{x} for $\bar{y} \in \Phi(\bar{x})$ if:

- its graph gph Φ is a manifold around (\bar{x}, \bar{y}) , and
- ► $P: \operatorname{gph} \Phi \to \mathbf{R}^n$ defined by P(x, y) = x is constant rank. around (\bar{x}, \bar{y}) . (Range(P) is the active manifold.)

(Equivalently, the range and tangent spaces

$$\{0\} imes \mathbf{R}^m$$
 and $T_{gph \Phi}(x, y)$

intersect with constant dimension as (x, y) varies.)

Definition 2 Manifold \mathcal{M} identifiable for $\bar{y} \in \Phi(\bar{x})$ means $y_k \in \Phi(x_k)$ and $(x_k, y_k) \to (\bar{x}, \bar{y})$ implies $x_k \in \mathcal{M}$ eventually.

(Definition 1 implies Definition 2: \mathcal{M} is the active manifold.)

Identification and the "active set" philosophy

Consider a high-dimensional nonsmooth generalized equation

(*)
$$y \in \Phi(x)$$

described by set-valued $\Phi \colon \mathbf{R}^n \rightrightarrows \mathbf{R}^m$.

- ► Variable *x*.
- Data y.

If Φ is partly smooth at \bar{x} for \bar{y} , with identifiable manifold \mathcal{M} , then (*) reduces locally to a lower-dimensional smooth problem

$$(x, \overline{y}) \in \operatorname{gph} \Phi$$
 and $x \in \mathcal{M}$,

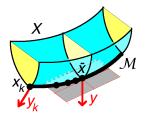
open to Newton-type acceleration.

The geometry of partial smoothness

Special case: Minimize $\langle y, \cdot \rangle$ over closed $X \subset \mathbf{R}^n$. Critical points are zeros of

$$\Phi(x)=y+N_X(x).$$

For concrete sets X, optimization typically reveals **ridges**: varying the problem parameters ydetermines solutions varying over **smooth** manifolds $\mathcal{M} \subset X$, around which X is **sharp**.

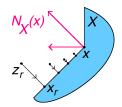


Explanation: concrete sets X are **partly smooth**. More precisely...

Mathematical foundations

The normal cone $N_X(x)$ at $x \in X$ consists of

$$n=\lim_r\lambda_r(z_r-x_r)$$



where $\lambda_r > 0$, $z_r \to x$, and x_r is a projection of z_r onto X.

The tangent cone $T_X(x)$ consists of $t = \lim_r \mu_r(y_r - x)$, where $\mu_r > 0$ and $y_r \to x$ in X.

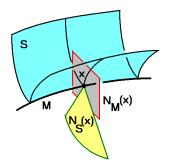
X is (Clarke) regular at x when these cones are polar: $\langle n, t \rangle \leq 0$. (Eg: X prox-regular: points near x have unique nearest points... ... and then \lim_{r} not needed for normals.)

Examples. Manifolds and convex sets are prox-regular, with classical normal and tangent cones/spaces.

Partly smooth sets

 $S \subset \mathbf{R}^n$ is **partly smooth** relative to a manifold $\mathcal{M} \subset S$ if

- S prox-regular throughout \mathcal{M}
- \mathcal{M} is a **ridge** of S: $N_S(x)$ spans $N_{\mathcal{M}}(x)$ for $x \in \mathcal{M}$.
- $N_S(\cdot)$ is **continuous** on \mathcal{M} .



Examples

- Polyhedra, relative to their faces
- {x : smooth $g_i(x) \le 0$ }, relative to {x : active $g_i(x) = 0$ }
- Semidefinite cone, relative to fixed rank manifolds.

(L '02)

Equivalent partly smooth ideas

Consider a point

 $\bar{x} \in \mathcal{M} \subset S \subset \mathbf{R}^n$,

where the set S is prox-regular throughout the manifold \mathcal{M} , with normal vector $\bar{y} \in N_S(\bar{x})$. The following notions of partial smoothness are all equivalent.

- ▶ Differential-geometric: The operator N_S is partly smooth at \bar{x} for \bar{y} , with active manifold \mathcal{M} .
- Algorithmic: \mathcal{M} is identifiable at \bar{x} for \bar{y} , for the operator N_S .
- ► Variational-analytic: The set S is partly smooth relative to M...
 - "locally", at \bar{x} for \bar{y} ...
 - and $\bar{y} \in \operatorname{ri} N_S(\bar{x})$.

Analogous result for partly smooth **functions** f (and ∂f).

(Drusvyatskiy-L '14, L-Liang '18)

Sard-type behavior: partial smoothness is common Consider a **semi-algebraic** generalized equation

 $y \in \Phi(x)$

described by set-valued $\Phi \colon \mathbf{R}^n \rightrightarrows \mathbf{R}^m$.

- Variable x unknown.
- Data y generic.

Suppose Φ has small graph:

 $\dim(\operatorname{gph} \Phi) \leq m.$

Then:

- Solution set Φ⁻¹(y) is finite (possibly empty);
- Φ is partly smooth at every solution for *y*;
- Near each solution, Φ^{-1} is single-valued and Lipschitz.

Example (Drusvyatskiy-L-loffe '16) Normal cones, subdifferentials.

Summary

(from various "nebulous" perspectives)

Many algorithms(or formulations, or post-optimality analyses...)for optimization(and broader variational problems)identify(or target, or reveal)activity(or structure)in solutions.

The reason: a blend of smooth and nonsmooth geometry — partial smoothness.

A simple unifying explanation:

constant-rank properties of first-order conditions .