
Partial smoothness and active sets:
a fresh approach

Adrian Lewis

ORIE Cornell

Joint work with: J. Liang (Cambridge) ISMP Bordeaux 2018

1 / 16



Outline

Three examples identifying activity in variational problems.

I Active set methods for SDP.

I Primal-dual splitting for saddlepoints.

I ProxDescent for composite optimization.

Three ideas of partial smoothness:

I Differential-geometric: constant-rank

I Algorithmic: identification

I Variational-analytic: nonsmooth geometry. . .

. . . and their equivalence and ubiquity.
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Example 1: active sets in semidefinite optimization

For C (2)-smooth, strongly convex f , the optimal solution X̄ of

min{f (X ) : X ∈ Sn
+}

is just the zero of “gradient + normal cone” operator:

Φ(X ) = ∇f (X ) + NSn
+

(X )︸ ︷︷ ︸ .
X ⊥ Y ∈ −Sn

+

Projected gradient iteration X ←
(
X − α∇f (X )

)
+

converges to X̄

with min ‖Φ(X )‖ → 0. If 0 ∈ ri Φ(X̄ ) (strict complementarity),
iterates identify an active manifold: eventually,

X ∈M = {X : rankX = rank X̄}.

Linear convergence, and faster via projected Newton steps in M.
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Example 2: primal-dual splitting

For convex f , g , p, q with p, q smooth, and a matrix A,
saddlpoints for

min
x

max
y

{
(f + p)(x) + yTAx − (g + q)(y)

}
are zeros of the monotone operator

Φ

[
x
y

]
=

[
∂f +∇p −AT

A ∂g +∇q

] [
x
y

]
.

Generalized proximal point seeks saddlepoints by updating (x , y):

xnew minimizing f (·) +
1

2
‖ · −x +∇p(x) + AT y‖2

ynew minimizing g(·) +
1

2

∥∥ · −y +∇q(y) + A(x − 2xnew)
∥∥2
.

4 / 16



Identification for saddlepoint problems
Primal-dual splitting for

min
x

max
y

{
(f + p)(x) + yTAx − (g + q)(y)

}
:

includes many special cases.

I g = δ{0} (forcing y = 0): proximal gradient method.

I p = 0 and q = 0: (Chambolle-Pock ’11, . . . ).

(Liang-Fadili-Peyré ’18) give conditions for convergence, with

min

∥∥∥∥Φ

[
x
y

]∥∥∥∥→ 0,

identification of active manifolds,[
x
y

]
∈M×N eventually,

and linear convergence.
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Example 3: nonconvex regularizers for sparse estimation

min
x
‖A x− b‖2 + τ

∑
i

φ(xi ) (Zhao et al. ’10).

Random 256-by-4096 A, sparse x̂, and b = A x̂ + noise.

Eventual support identification and linear convergence.
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Composite minimization via ProxDescent
Minimize nonsmooth (but prox-friendly) h : Rm → R̄
composed with smooth c : Rn → Rm. Around current x ,

c̃(d) = c(x) +∇c(x)d ≈ c(x + d).

Proximal step d minimizes

h
(
c̃(d)

)
+ µ‖d‖2.

Update step control µ: if

actual = h
(
c(x)

)
− h
(
c(x + d)

)
less than half

predicted = h
(
c(x)

)
− h
(
c̃(d)

)
,

reject: µ← 2µ; else,
accept: x ← x + d , µ← µ

2 .
Repeat. (L-Wright ’15)
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The pattern of partial smoothness

Each example involves an active manifold of solutions to a
variational problem, identified by diverse algorithms.

Three, often equivalent perspectives on partial smoothness:

I Differential-geometric: constant-rank;

I Algorithmic: identification;

I Variational-analytic: nonsmooth geometry.
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Partly smooth operators

Definition 1 Set-valued Φ: Rn →→ Rm is partly smooth
at x̄ for ȳ ∈ Φ(x̄) if:

I its graph gph Φ is a manifold around (x̄ , ȳ), and

I P : gph Φ→ Rn defined by P(x , y) = x is constant rank.
around (x̄ , ȳ). (Range(P) is the active manifold.)

(Equivalently, the range and tangent spaces

{0} × Rm and Tgph Φ(x , y)

intersect with constant dimension as (x , y) varies.)

Definition 2 Manifold M identifiable for ȳ ∈ Φ(x̄) means
yk ∈ Φ(xk) and (xk , yk)→ (x̄ , ȳ) implies xk ∈M eventually.

(Definition 1 implies Definition 2: M is the active manifold.)
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Identification and the “active set” philosophy

Consider a high-dimensional nonsmooth generalized equation

(∗) y ∈ Φ(x)

described by set-valued Φ: Rn →→ Rm.

I Variable x .

I Data y .

If Φ is partly smooth at x̄ for ȳ , with identifiable manifold M,
then (∗) reduces locally to a lower-dimensional smooth problem

(x , ȳ) ∈ gph Φ and x ∈M,

open to Newton-type acceleration.
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The geometry of partial smoothness

Special case: Minimize 〈y , ·〉 over closed X ⊂ Rn.
Critical points are zeros of

Φ(x) = y + NX (x).

For concrete sets X , optimization
typically reveals ridges: varying
the problem parameters y
determines solutions varying over
smooth manifolds M⊂ X ,
around which X is sharp.

Explanation: concrete sets X are partly smooth.
More precisely. . .
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Mathematical foundations

The normal cone NX (x) at x ∈ X
consists of

n = lim
r
λr (zr − xr )

where λr > 0, zr → x , and
xr is a projection of zr onto X .

The tangent cone TX (x) consists of t = limr µr (yr − x), where
µr > 0 and yr → x in X .

X is (Clarke) regular at x when these cones are polar: 〈n, t〉 ≤ 0.
(Eg: X prox-regular: points near x have unique nearest points. . .
. . . and then limr not needed for normals.)

Examples. Manifolds and convex sets are prox-regular,
with classical normal and tangent cones/spaces.
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Partly smooth sets

S ⊂ Rn is partly smooth relative to
a manifold M⊂ S if

I S prox-regular throughout M
I M is a ridge of S :

NS(x) spans NM(x)
for x ∈M.

I NS(·) is continuous on M.

Examples

I Polyhedra, relative to their faces

I {x : smooth gi (x) ≤ 0}, relative to {x : active gi (x) = 0}
I Semidefinite cone, relative to fixed rank manifolds.

(L ’02)
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Equivalent partly smooth ideas
Consider a point

x̄ ∈M ⊂ S ⊂ Rn,

where the set S is prox-regular throughout the manifold M, with
normal vector ȳ ∈ NS(x̄). The following notions of partial
smoothness are all equivalent.

I Differential-geometric: The operator NS is partly smooth
at x̄ for ȳ , with active manifold M.

I Algorithmic: M is identifiable at x̄ for ȳ , for the operator NS .

I Variational-analytic: The set S is partly smooth
relative to M. . .

I “locally”, at x̄ for ȳ . . .
I and ȳ ∈ riNS(x̄).

Analogous result for partly smooth functions f (and ∂f ).

(Drusvyatskiy-L ’14, L-Liang ’18)
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Sard-type behavior: partial smoothness is common
Consider a semi-algebraic generalized equation

y ∈ Φ(x)

described by set-valued Φ: Rn →→ Rm.

I Variable x unknown.

I Data y generic.

Suppose Φ has small graph:

dim(gph Φ) ≤ m.

Then:

I Solution set Φ−1(y) is finite (possibly empty);

I Φ is partly smooth at every solution for y ;

I Near each solution, Φ−1 is single-valued and Lipschitz.

Example (Drusvyatskiy-L-Ioffe ’16) Normal cones, subdifferentials.
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Summary (from various “nebulous” perspectives)

Many algorithms (or formulations, or post-optimality analyses. . . )

for optimization (and broader variational problems)

identify (or target, or reveal)

activity (or structure)

in solutions.

The reason: a blend of smooth and nonsmooth geometry —
partial smoothness.

A simple unifying explanation:

constant-rank properties of first-order conditions .
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